SAULT STE. MARIE, ONTARIO SAURY SAULT STE.

ine student vill relatorce his/her basic understanding of soli formation, identification and classification. In addition the student vill be introduced to the engineering properties of soil and movement of water through soil. Sub-orade pavement materials

COURSE OUTLINE

Course title:	25X 25X	SOIL MECHANICS	AND HIGHWAY	ENGINEERING	
Code No.:	1002	ARC 231-3			
Program:		CIVIL/CONSTRUCT	ION -	A A S	
Semester:		III	SSX - 69X Repeat		
Date:	g d	AUGUST 1988	extenuation at a sadditional course		
Author:		S. IENCO	mi shaqo sid	nimus accepta	IN (I
					X
		1	New:	Revision:	11
Approved:	Chair	Month of the person	teria vhether	Avgvit	24/88

SUR 231-3

Course Name

Course Number

PHILOSOPHY/GOALS: TEATHO STEAM STE TIME

The student will reinforce his/her basic understanding of soil formation, identification and classification. In addition the student will be introduced to the engineering properties of soil and movement of water through soil. Sub-grade pavement materials will also be covered.

METHOD OF ASSESSMENT:

Labwork	40%	
Mid Term Examination	25%	
Final examination	35%	

100%

A +	90%	-	100%	
Α	80%	-	89%	
В	70%	-	79%	
C	55%	-	69%	
-	-			

R Repeat

X A temporary grade, limited to situations with extenuating circumstances, giving a student additional time to complete the requirements of the course.

- 1) Minimum acceptable grade is 55%.
- 2) Each lab assignment will carry equal weight.
- 3) If at the end of the semester your overall average of the combined labwork, assignments, mid semester examination and final semester examination is below 55%, then it will be up to the instructor whether you receive an "R" grade or a rewrite. The criteria employed for arriving at that decision is class attendance, class participation and overall grade.
- 4) If a re-write is granted it will be given for the examination portion the course work, that is 50% of the overall grade and the maximum obtainable mark is 60%.

TEXT: Highway Materials, Soils & Concretes Harold N. Atkins

ARC 231

TOPIC NO.	PERIODS	TOPIC DESCRIPTION
1.	8	Site Investigation Manhagement and a
		- Sample recovery
		- Bore noie logs
		observations
2. 9. 1 gass	25	Laboratory Soils
		- Soil classification
		Mana analana anananana
		- Grain size by sieve analysis
		Contact the budget of and look
		- Atterburg limits test
		- Constant head permeability test
		- Falling head permeability test
		- Unconfined compression test
		- Compaction test with end parel
		- Determination of In-place soil density
		- California bearing ratio test
3.	12	Highway Construction
		- Sub grade treatment
		=
		preparation
		- Earthwork operations
		- Compaction equipment
4.	15	Movement of Water Through Soil
		- Permeability moltowydanol wawdpl
		- Darcy's law of flow
		- Flow nets and due of will nebl
		- Drainage
		CCOUT

COURSE OBJECTIVES

SOIL MECHANICS AND HIGHWAY ENGINEERING

ARC 231-3

Site Investigation

- Identify those topographical features of a site that indicate its subsoil properties.
- Prepare a schedule of equipment for a typical subsoil investigation.
- 3. Schedule a procedure for carrying out such an investigation.
- List the steps necessary to ensure satisfactory sample recovery.
- 5. Participate in a field crew investigating party.
- Recover at least three bored samples in an "undisturbed" form, and three "disturbed samples.
- Submit a written report on the site exercise together with site plan and logs.

Soil Mechanics

- 1. Using the disturbed samples determine the water content.
- From an undisturbed sample determine the Mass volume measurement.
- Using the disturbed samples determine the soil classification.
- 4. Perform a grain size analysis by sieve.
- 5. Perform a hydrometer test for fines passing the 200 sieve.
- 6. Classify the in situ soils
- 7. Determine the Atterburg limits for the sample soil.
- 8. Perform a constant head permeability test on at least two samples.
- 9. Perform an unconfined compression test on at least two undisturbed samples.
- 10. Solve basic soil problems using all of the above experimental findings.

Highway Construction

- Identify the sub-grade materials, treatment of unsuitable material and compaction requirements.
- 2. State the conditions that must be present for frost damage to
- 3. Identify the major components of a sub-grade structure.
- 4. Identify different types of earthmoving equipment.